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Preface

In 1889, the Nobel Prize winner Svante Arrhenius pointed out the existence of a “green-
house effect” in which small changes in the concentration of carbon dioxide in the
atmosphere could considerably alter the average temperature of a planet. About one
century later, humans realise that most climate changes are correlated with the in-
crease of the concentration of carbon dioxide in the atmosphere. A such prediction
from Svante Arrhenius clearly highlights that more knowledge of environmental
mechanisms is needed to cope with actual problems of pollution. Environmental
Chemistry is a fast emerging discipline aiming at the understanding the fate of pol-
lutants in ecosystems and at designing novel processes that are safe for ecosystems.
Past pollution should be cleaned. Future pollution should be predicted and avoided.

The 69 chapters of this book have been arranged into seven topics that form
the core of Environmental Chemistry: Analytical Chemistry, Toxic Metals, Organic
Pollutants, Polycyclic Aromatic Hydrocarbons, Pesticides, Green Chemistry, and
Ecotoxicology. Most chapters have designed to include (1) a review on the actual
knowledge and (2) cutting-edge research results. Thus this book will be useful to stu-
dents and decision-makers who wish to learn rapidly the essential background of a
specific topic, and to scientists who wish to locate the actual frontiers of science in a
specific domain.

We wish here to thank all authors for providing high quality manuscripts. We are
indebted to Armin Stasch, Luisa Tonarelli and Marion Schneider from Springer for
technical assistance. We thank Dr.  Christian Witschel, Executive Editor of Geosciences
at Springer for having accepted our project to design this book. Last but not least, we
thank very much Brigitte Elbisser who has been from 2000 to 2003 the key staff of the
European Association of Chemistry and the Environment (ACE), producing Newslet-
ters, taking care of budget and memberships, organising annual meetings, and help-
ing at the book preparation.

Drs. Eric Lichtfouse, Jan Schwarzbauer and Didier Robert
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IIn-situ Method for Analyzing the Long-Term Behavior

of Particulate Metal Phases in Soils

A. Birkefeld  ·  R. Schulin  ·  B. Nowack

Abstract

Soils can act as a sink for anthropogenic and naturally released heavy metals. Among these are
heavy metal oxides and sulfides, which are emitted e.g. by mining industry and metal smelting. The
dissolution and transformation behavior of these heavy metal phases specifies their fate in the soil
and determines whether the metals become bioavailable or could contaminate the groundwater.
To gain more information about these dissolution reactions in soils, in-situ methods are needed. We
present here a method to fix particulate metal phases on an inert support. This method allows us
to expose and recover metal phases in the environment under controlled conditions.

Acrylic glass was chosen as inert polymer substrate for the heavy metal phases as it is stable to
weathering. Epoxy resin was used as adhesive film between the acrylic glass support and the heavy
metal coating. The fine-grained heavy metal phases are applied onto the epoxy resin using a dust
spray gun. The heavy metal coated polymer platelets can be inserted in a controlled way into se-
lected soil profiles and be recovered after definite time intervals. Qualifying and quantifying analy-
sis can be carried out on every single polymer support.

Key words: in-situ method; metal phase transformation; soil pollution; heavy metals

1.1
Introduction

Soils represent an important sink for anthropogenic and natural heavy metals (Alloway
and Ayres 1997; Schachtschabel et al. 1998). The fate of heavy metals in the environ-
ment is of elemental concern due to potential contamination risks of water, soils and
sediments and due to toxicity of heavy metals to plants, animals and humans via
the food chain. Soils near urban or industrial settlements have often been polluted
by particulate heavy metal phases, mainly through atmospheric transport (Ge et al.
2000). Major anthropogenic heavy metal phases, emitted e.g. by mining and smelt-
ing operations, are sulfides (Ketterer et al. 2001) and oxides (Dudka and Adriano
1997). The dissolution and phase transformations of these particulate phases over
time influences the bioavailability of the metals in the soil and the transport into
the groundwater (Dudka et al. 1995). Knowledge about the physico-chemical phase
transformations of heavy metal phases in the long-term aspect is therefore crucial
(Ge et al. 2000; Fengxiang and Banin 1997; Li and Thornton 2001). Specific heavy
metal phases like oxides can be present in soils even after long time periods (Li and
Thornton 2001).
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I Methods have been established to classify heavy metal phases based on their dis-

solution behavior from solid phases in soils (Tessier et al. 1979; Brümmer et al. 1986;
Ure and Davidson 1995). These sequential extraction methods classify the heavy metals
into different groups, e.g. water soluble, exchangeable, organically bound, bound to
iron and manganese oxides and bound in silicate structures. These procedures were
applied in several studies investigating soils contaminated by mining and smelting
activities (Li and Thornton 2001) and on unpolluted soils where heavy metals were
added (Ma and Uren 1998). Conversely the exact detection of these phases is not straight
forward (Manceau et al. 1996) and generated different approaches for sequential ex-
tractions (Ure and Davidson 1995). However, identifying the heavy metal species es-
pecially the one from anthropogenic sources is of major concern to assess their toxic
behavior in soils (Ford et al. 1999; Henderson et al. 1998; Brümmer 1986).

In the last years extended X-ray absorption fine structure (EXAFS) analysis has also
been increasingly used to identify heavy metal phases in soils (Welter et al. 1999; Rob-
erts et al. 2002; Fendorf et al. 1994) but this method is still limited to high metal con-
centrations. Distinct heavy metal phases have been detected in soils, e.g. lead and zinc
in the vicinity of industrial and mining facilities (Welter et al. 1999; Manceau et al. 1996).

To investigate the dissolution and transformation behavior of metal phases directly
in the soil an in-situ method is needed. The in-situ dissolution of (soil)-minerals in-
serted into soil or groundwater horizons has been investigated (Righi et al. 1990; Ranger
et al. 1991; Hatton et al. 1987; Bennett et al. 2001). The minerals e.g. vermiculite, were
placed in porous bags in the soils and recovered after different time intervals. But these
experiments were only designed to investigate soil forming processes. Tsaplina (1996)
has reported the behavior of heavy metal oxides mixed into the topsoil of selected
locations (PbO, ZnO 500 mg kg–1 and CdO 50 mg kg–1). The samples for this study were
collected after four and eight years. Fractions of the applied phases could be recovered
by separation from the soil by density fractionation and were then identified by X-ray
diffraction (Tsaplina 1996). The final sample analysis showed that about 40 wt% to
50 wt% of the initial heavy metal oxides were still present in the soil.

The sparse amount of literature about the in-situ behavior of heavy metal phases clearly
shows that there are methodical and analytical difficulties in this area. In this article we
would like to introduce a new in-situ method to investigate the behavior of heavy metal
phases in soils (Birkefeld et al. 2004). The concept is to fix the heavy metal phases on a sup-
port which can be placed in the soil and which can easily be recovered. This approach allows
direct analysis of the heavy metal particles after recovery and determination of their physico-
chemical changes. A reinsertion into the soil for further investigation is possible. The
method has been developed using heavy metal oxides and sulfides as model substances.

1.2
Experimental

To insert heavy metal phases of interest into the soil with the ability to recover them
after certain time segments and to possibly re-apply them, we need the aid of a carrier
material. The material should have good mechanical properties for sawing and mill
cutting. We choose polymethacrylate (Plexiglas®) because this transparent polymer is
resistant to weathering and ageing (Schwarz 2000).
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AG Switzerland) (Suter 1999) was used to mount the metal phases onto the polymer
support. Epoxy resin was used due to its resistance against decomposition (Suter 2001).
Prior to the application of the resin and the heavy metals, the supports were cut into
sections of 2.2 × 2.2 cm. This size was chosen due to the limited space in the sample
holder of the X-ray fluorescence (XRF) analytical instrument. 20 polymer supports
were clamped into an acrylic glass frame to hold them together (11 × 11 cm). With a
commercially available paint roll with a width of 5 cm and a diameter of 3 cm the
epoxy resin was applied onto the surface of the polymer supports (0.12 g resin/sup-
port). The frame holder with the polymer supports was placed in a dust sealed cham-
ber with fume extraction hoses. Before the application of the metal phases the epoxy
resin covered supports were allowed to dry for 5 min in order to enhance the viscosity
of the resin and to avoid complete capillary covering of the applied heavy metal par-
ticles. With a commercially available compressed air dust spray gun (SAV 030 025,
Schneider Druckluft, Germany) the heavy metal phases were applied from a distance
of approx. 1 m (air pressure: 1.5 kg cm–2) onto the epoxy resin covered surface of the
supports. The application time (spraying) was 10 seconds. After an overnight drying
period at 50 °C in a laboratory drying cabinet the heavy metal coated polymer sup-
ports were cleaned with a soft brush in deionized water (Nanopure, >18 MΩ; 5 ppb
TOC) to remove loose excess heavy metal particles from the support surface. After an
additional 24 h-drying period at 40 °C the polymer supports were ready for use.

The model substance for our method development was a lead oxide from a commer-
cial metal oxide manufacturer (PbO LOX 150 Pennarroya Oxide, Germany). This oxide
was produced by direct oxidation of metallic lead and has a minimum content of PbO of
99.8%. Its density is 9.5 g cm–3 and the average particle size is about 0.1 mm diameter.

To determine the uncovered, reactive surface area of the particles, adsorption experi-
ments were carried out with phenylphosphonic acid (PPA) (analytical grade; Fluka, Swit-
zerland) in a 0.1 mmolar acetate buffer (pH 4.6). PPA was chosen because of its well-known
adsorption characteristics onto a variety of different surfaces e.g. aluminum oxide (Laiti
and Öhman 1996). The concentration of the PPA was 10–400 µM. Blank measurements
with Plexiglas® and with epoxy resin covered supports showed that they did not adsorb
PPA. The initial concentration and the final concentration of PPA after reaction times of
5, 10, 15, 20 and 30 min were measured by ion chromatography analysis (DX 100 ion chro-
matograph, Dionex USA). The maximum surface capacity of the heavy metal phases was
also determined in suspension under the same conditions (10–400 µM PPA in 0.1 molar
acetate buffer, pH 4.6). The amount of PPA adsorbed in suspension in mol m–2 was then
used to calculate the exposed surface area of the resin-immobilized metals. A dissolution
experiment with ethylene diamine tetraacetic acid (EDTA) was carried out to get an
overview about the dissolution behavior of the mineral substances. The analytical condi-
tions were EDTA 1 mM at pH 4.7 with a reaction time of 1 h.

To establish the amount of heavy metals on each polymer support X-ray fluores-
cence analysis (XRF) was made on every support before further use (X-Lab 2000,
Spectro Germany). Because the XRF analysis requires fine grained samples, the method
was externally calibration checked with data from atomic absorption spectrometry
(AAS) measurements (SpectrAA 220, Varian Australia) after complete dissolution with
EDTA of the heavy metals on the support. For the EDTA dissolution the same samples



A. Birkefeld  ·  R. Schulin  ·  B. Nowack6

P
ar

t 
I were used which were analyzed previously with XRF. The coated polymer supports

were placed in Teflon® vessels and 10 ml 0.1 M EDTA (analytical grade, Merck Ger-
many) was added. The vessels were placed in a microwave digestion system (ETHOS,
Milestone Italy) and underwent a temperature program with constant pressure con-
trol (1. step 400 W for 7 min; 2.step 300 W for 3 min; 3. step 200 W for 40 min). The
temperature was held at 160 °C over the whole dissolution process. The polymer sup-
ports and the resin were not altered by the EDTA and only the oxide minerals were
dissolved. Scanning electron microscopic (SEM) investigations were carried out with
a Cam Scan CS44, CamScan – United Kingdom.

1.3
Results and Discussion

1.3.1
Particle Appearance on Support Surface

To show the applicability of the approach several preleminary examinations were car-
ried out. Optical and scanning electron microscopic examinations of the heavy metal
covered supports showed the allocation density of the phases (PbO) on the epoxy
resin. The metal oxides form almost a single layer on the resin (Fig. 1.1) which gives
the conclusion that the cleaning step after hardening of the resin is complete. All of
the particles are in contact with the epoxy resin and are therefore attached to the
surface of the support. There is no sign of loose particles which could fall off during
handling the supports and while resting in the soil profile. This is important to avoid
material loss before the proper experiment or during placing or retrieving the sup-
ports. The microscopic examination showed that the heavy metal particles were not
immersed in the epoxy resin film (Fig. 1.2). Only a certain percentage of their surface
is in contact with the epoxy resin. This gives a high amount of uncovered mineral
surface which can interact with the soil environment. The epoxy resin used had a
high viscosity which avoids a complete coverage of the particles due to the capillary

Fig. 1.1.
SEM surface picture of a poly-
mer support coated with lead
oxide. SEM: scanning electron
microscope
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effect of the resin. This effect can be additionally controlled if after preparing the
epoxy resin (mixing with the hardener substance), it is allowed to pre-react (harden-
ing) for a few minutes which increases the viscosity. It could be shown that the used
technique to attach particulate matter onto a support is suitable.

1.3.2
Coating Process

The coating process itself is not difficult to handle. A constant distance between the
dust spray gun and the epoxy covered supports should be used. Also a constant air
flow/pressure and a constant spray time should be kept. These are the most favorable
conditions to produce polymer supports that are uniformly covered with heavy metal
phases. It is self-evident that the application step can only be carried out in rooms
with appropriate dust and air extraction units. A fine-dust face mask and an overall
should be used to comply with the working safety regulations (Fig. 1.3).

Fig. 1.2.
Lead oxide particles on a poly-
mer support, picture taken at
an angel of 70°

Fig. 1.3.
Substance application cham-
ber: In front the dust spray
gun (1) and in the chamber the
Plexiglas support (2). The tube
is the dust extraction unit (3)
(for working safety reasons)
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Fig. 1.5.
Polymer support with lead ox-
ide particles after a dissolution
experiment with 1 mM EDTA
over 1 h at pH 4.7

Fig. 1.4.
Polymer support with lead ox-
ide particles after a dissolution
experiment with 1 mM EDTA
over 1 h at pH 4.7

To estimate the amount of applied minerals, every polymer support is weighed
before and after the mineral application with a laboratory balance. The mass of the
epoxy resin onto the supports was calculated by simple subtraction of the support
mass before and after pure resin application on a support test set (N = 30).

1.3.3
Support Testing prior Insertion

The mechanical stability and the amount of resin-free particle surface was estimated
with special experiments. Simple dissolution with ethylenediaminetetraacetic acid
(EDTA) showed that the heavy metal phases can be dissolved without falling off from
the surface. This dissolution experiment was carried out to simulate a dissolution
process which could take place in a soil. Therefore it was important to see how the
heavy metal covered support reacts mechanically if it is going to be recovered from
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still attached to the support. Figure 1.5 shows a grain that has been dissolved almost
completely. The former contact area of the particle with the support is still visible.
The small remaining particle is still attached to the support. This experiment showed
the good adhesion stability of the attached particles and their resistance to the clean-
ing steps. The estimation of the uncovered mineral surface which can directly inter-
act with the soil environment can be determined with adsorption experiments. Pre-
liminary experiments with phenylphosphonic acid (PPA) in an acetate buffered en-
vironment (pH 4.7) showed promising results, indicating that PPA is adsorbing onto
the mineral surfaces but not onto the carrier material. Comparing the adsorption
capacity of the bulk mineral material to the results with the mineral covered support
will yield the amount of free reactive surface of the mineral supports. Together with
the surface area (analyzed with the Brunauer-Emmet-Teller (BET) nitrogen sorption
method) of the bulk mineral substance, we can then calculate the reactive surface
area of the supports. This method to estimate the resin-free particle surface is useful
to get an overview about the amount of “reactable” particle area.

1.3.4
Analytical Methods

The nondestructive X-ray fluorescence (XRF) analysis is the method of choice for
quantifying the metal concentration of the covered polymer supports. With this analy-
sis technique we have a useful tool to monitor e.g. the dissolution behavior of the heavy
metals in the soil over different time scales. The supports can be reinserted into the
soil after XRF analysis to undergo further reactions. A comparison of the XRF analysis
and atomic absorption spectroscopic (AAS) analysis of the same supports has to be
performed for each material that is used. The intention of this comparison is to find
out whether the XRF results that are obtained using a calibration for powdered metal
phases can be used to determine the metal concentration on the supports.

The electron optical analysis with the Scanning electron microscope (SEM) keeps
track of the surface changes of the minerals on the supports. Traces of dissolution
processes or precipitations on the mineral surfaces can be detected with this method
(Bennett et al. 2001). Figures 1.1, 1.2, 1.4, and 1.5 show the application of this method
to our samples. As already discussed above this method allows the direct visualization
of the dissolution process. Additional coupling with the electron dispersive X-ray probe
(EDX) can show the spatial elemental distribution on the supports or even of a min-
eral grain and its surrounding vicinity. With the use of an “environmental scanning
electron microscope, ESEM” there is no need to coat the supports with a conducting
surface e.g. gold or carbon. It will provide the same data as a conventional SEM (with
attached EDX probe) but will have the same nondestructive benefits like the XRF
method with a possible further use of the samples.

A more mineral specific analytical method is the infrared Raman spectroscopy in
conjunction with a infrared microscope. This technique can detect certain mineral
phases (Sobanska et al. 1999) on the support. Raman spectroscopy could give an in-
dication of occurred phase transformations of the minerals. It might not have the
power of the EXAFS technique but it is compact and can be performed in a normal



A. Birkefeld  ·  R. Schulin  ·  B. Nowack10

P
ar

t 
I laboratory environment. Because it is also a non destructive method the supports can

be examined before and after insertion into soils. The use of nondestructive analyti-
cal methods should be favorized to keep the samples unchanged and open for other
examinations.

1.4
Conclusions

The establishment of a method for the in-situ analysis of the reactions of heavy metal
phases in soils was successfully carried out. With lead oxide as a model substance it
could be shown that the particles are strongly fixed on the polymer supports and
survive even extended dissolution without falling off. The method might have the
ability to be used with different substances e.g. heavy metal oxides and sulfides, iron
oxides or clays. The method can also be used to expose particles to other environ-
ments, e.g. natural waters, sediments or technical systems such as water treatment
plants. The designated analytical methods are all nondestructive and avoid alterations
of the samples that can therefore be further used.
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